Shear Viscosity Coefficient from Microscopic Models

نویسنده

  • Azwinndini Muronga
چکیده

The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the Ultra–relativistic Quantum Molecular Dynamics (UrQMD), using the Green–Kubo formulas. Molecular– dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π, η , ω , ρ , φ with a uniform phase–space distribution, the evolution takes place through elastic collisions, production and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green–Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times. PACS numbers : 05.60.-k, 24.10.Lx, 24.10.Pa, 51.20.+d Typeset using REVTEX

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear Viscosity of a Unitary Fermi Gas Near the Superfluid Phase Transition.

We measure the shear viscosity for a resonantly interacting Fermi gas as a function of temperature from nearly the ground state through the superfluid phase transition into the high temperature regime. Further, we demonstrate an iterative method to estimate the local shear viscosity coefficient α(S)(θ) versus reduced temperature θ from the cloud-averaged measurements ⟨α(S)⟩, and compare α(S) to...

متن کامل

Shear viscosity coefficient and relaxation time of causal dissipative hydrodynamics in QCD.

The shear viscosity coefficient and the corresponding relaxation time for causal dissipative hydrodynamics are calculated based on the microscopic formula proposed in T. Koide and T. Kodama [Phys. Rev. E 78, 051107 (2008)10.1103/PhysRevE.78.051107]. Here, the exact formula is transformed into a more compact form and applied to evaluate these transport coefficients in the chiral perturbation the...

متن کامل

Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid

The buoyancy-driven boundary-layer flow from a heated horizontal circular cylinder immersed in a water-based alumina (Al2O3) nanofluid is investigated using variable properties for nanofluid viscosity. Two different viscosity models are utilized to evaluate heat transfer enhancement from a cylinder. Exact analytic solutions of the problem are attained employing a novel...

متن کامل

Viscosity and interfacial properties in a mussel-inspired adhesive coacervate.

The chemistry of mussel adhesion has commanded the focus of much recent research activity on wet adhesion. By comparison, the equally critical adhesive processing by marine organisms has been little examined. Using a mussel-inspired coacervate formed by mixing a recombinant mussel adhesive protein (fp-151-RGD) with hyaluronic acid (HA), we have examined the nanostructure, viscosity, friction, a...

متن کامل

Incompressible Non-Newtonian Fluid Flows

A non-Newtonian fluid is a fluid whose flow properties differ in many ways from those of Newtonian fluids. Most commonly the viscosity of non-Newtonian fluids is not independent of shear rate or shear rate history. In practice, many fluid materials exhibits non-Newtonian fluid behavior such as: salt solutions, molten, ketchup, custard, toothpaste, starch suspensions, paint, blood, and shampoo e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003